

Deep Learning for Solving Economic Models

Jesús Fernández-Villaverde¹

November 17, 2025

¹University of Pennsylvania

Functional equations

ullet A large class of problems in economics search for a function d that solves:

$$\mathcal{T}(d) = \mathbf{0}$$

- More formally:
 - 1. Let J^1 and J^2 be two functional spaces and let $T: J^1 \to J^2$ be an operator between these two spaces.
 - 2. Let $\Omega \subseteq \mathbb{R}^{I}$.
 - 3. Then, we need to find a function $d: \Omega \to \mathbb{R}^m$ such that $\mathcal{T}(d) = \mathbf{0}$.
- Points to remember:
 - 1. Regular equations are particular examples of functional equations.
 - 2. **0** denotes the zero element of the space.
 - 3. This formalism deals both with market equilibrium and social planner problems.

Example I: Decision rules

• Take the basic stochastic neoclassical growth model:

$$\begin{aligned} \max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t\right) \\ c_t + k_{t+1} &= e^{z_t} k_t^{\alpha} + (1 - \delta) k_t, \ \forall \ t > 0 \\ z_t &= \rho z_{t-1} + \sigma \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 1) \end{aligned}$$

• The first-order condition:

$$u'\left(c_{t}\right) = \beta \mathbb{E}_{t}\left\{u'\left(c_{t+1}\right)\left(1 + \alpha e^{z_{t+1}}k_{t+1}^{\alpha-1} - \delta\right)\right\}$$

Example I: Decision rules

• There is a decision rule (a.k.a. policy function) that gives the optimal choice of consumption and capital tomorrow given the states today:

$$d = \begin{cases} d^{1}(k_{t}, z_{t}) = c_{t} \\ d^{2}(k_{t}, z_{t}) = k_{t+1} \end{cases}$$

• Then:

$$\mathcal{T} = u'\left(d^{1}\left(k_{t}, z_{t}\right)\right)$$
$$-\beta \mathbb{E}_{t}\left\{u'\left(d^{1}\left(d^{2}\left(k_{t}, z_{t}\right), z_{t+1}\right)\right) \left(1 + \alpha e^{z_{t+1}}\left(d^{2}\left(k_{t}, z_{t}\right)\right)^{\alpha - 1} - \delta\right)\right\} = 0$$

 \bullet If we find d, and a transversality condition is satisfied, we are done!

Example II: Conditional expectations

Let us go back to our Euler equation:

$$u'(c_t) - \beta \mathbb{E}_t \left\{ u'(c_{t+1}) \left(1 + \alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} - \delta \right) \right\} = 0$$

Define now:

$$d = \begin{cases} d^{1}(k_{t}, z_{t}) = c_{t} \\ d^{2}(k_{t}, z_{t}) = \mathbb{E}_{t} \left\{ u'(c_{t+1}) \left(1 + \alpha e^{z_{t+1}} k_{t+1}^{\alpha - 1} - \delta \right) \right\} \end{cases}$$

- Why? Think about a model with a ZLB.
- Then:

$$\mathcal{T}(d) = u'\left(d^{1}\left(k_{t}, z_{t}\right)\right) - \beta d^{2}\left(k_{t}, z_{t}\right) = 0$$

Example III: Value functions

• There is a recursive problem associated with the previous sequential problem:

$$\begin{aligned} V\left(k_{t}, z_{t}\right) &= \max_{k_{t+1}} \left\{u\left(c_{t}\right) + \beta \mathbb{E}_{t} V\left(k_{t+1}, z_{t+1}\right)\right\} \\ c_{t} &= e^{z_{t}} k_{t}^{\alpha} + \left(1 - \delta\right) k_{t} - k_{t+1}, \ \forall \ t > 0 \\ z_{t} &= \rho z_{t-1} + \sigma \varepsilon_{t}, \ \varepsilon_{t} \sim \mathcal{N}(0, 1) \end{aligned}$$

• Then:

$$d(k_t, z_t) = V(k_t, z_t)$$

and

$$\mathcal{T}(d) = d(k_t, z_t) - \max_{k_{t+1}} \{ u(c_t) + \beta \mathbb{E}_t d(k_{t+1}, z_{t+1}) \} = 0$$

How do we solve functional equations?

- General idea: substitute d(x) by $d^n(x, \theta)$ where θ is an $n \dim$ vector of coefficients to be determined.
- Two main approaches:
 - 1. Perturbation methods:

$$d^{n}(x,\theta) = \sum_{i=0}^{n} \theta_{i}(x-x_{0})^{i}$$

We use implicit-function theorems to find θ_i .

2. Projection methods:

$$d^{n}(x,\theta) = \sum_{i=0}^{n} \theta_{i} \Psi_{i}(x)$$

We pick a basis $\{\Psi_i(x)\}_{i=0}^{\infty}$ and "project" \mathcal{T} against that basis.

All traditional solution methods are variations of these two ideas

- Linearization (or loglinearization): equivalent to a first-order perturbation.
- Linear-quadratic approximation to the utility function: equivalent (under certain conditions) to a first-order perturbation.
- Parameterized expectations: a particular example of projection.
- Value function iteration: it can be interpreted as an iterative procedure to solve a particular projection method. Nevertheless, I prefer to think about it as a different family of problems.
- Policy function iteration: similar to VFI.

Neural networks

A different approximation: A neural network

• A neural network is an approximation to d(x) of the form:

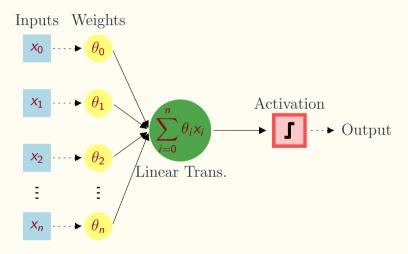
$$y = d(x) \cong d^{NN}(x; \theta) = \theta_0 + \sum_{m=1}^{M} \theta_m \phi(z_m)$$

where $\phi(\cdot)$ is an arbitrary activation function and:

$$z_m = \sum_{n=0}^{N} \theta_{n,m} x_n$$

- The x_n 's are known as the features of the data, which belong to a feature space \mathcal{X} .
- The $\phi(z_m)$'s are known as the representations of the data.
- *M* is known as the width of the model (wide vs. thin networks).
- "Training" the network: We select θ such that $d^{NN}(x;\theta)$ is as close to d(x) as possible given some relevant metric (e.g., the ℓ_2 norm).

Flow representation



Comparison with previous approximations

Compare:

$$d(x) \cong d^{NN}(x; \theta) = \theta_0 + \sum_{m=1}^{M} \theta_m \phi \left(\sum_{n=0}^{N} \theta_{n,m} x_n \right)$$

with a standard projection:

$$d(x) \cong d^{CP}(x;\theta) = \theta_0 + \sum_{m=1}^{M} \theta_m \phi_m(x)$$

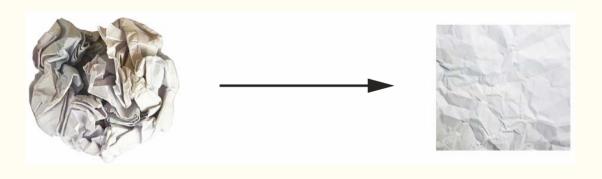
where ϕ_m is, for example, a Chebyshev polynomial.

• We trade rich coefficient parameterizations for parsimonious basis functions.

Why do neural networks "work"?

- Neural networks consist entirely of chains of tensor operations: we take x, we perform affine transformations, and apply an activation function.
- Thus, these tensor operations are geometric transformations of x. In fact, a better name for neural networks could be *chained geometric transformations*.
- In other words: neural networks look for convenient geometrical representations of high-dimensional manifolds.
- The success of any functional approximation problem is to search for the right geometric space in which to perform it, not to search for a "better" basis function.
- Think about:

$$y = k^{\alpha} l^{1-\alpha} \Rightarrow \log y = \alpha \log k + (1-\alpha) \log l$$



Deep learning, I

• A deep learning network is an acyclic *multilayer* composition of J > 1 neural networks:

$$z_m^0 = \theta_{0,m}^0 + \sum_{n=1}^N \theta_{n,m}^0 x_n$$

and

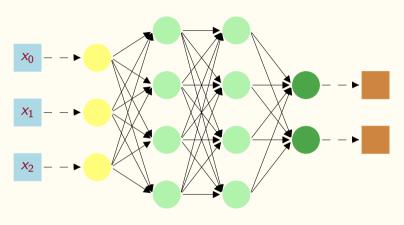
$$z_{m}^{1} = \theta_{0,m}^{1} + \sum_{m=1}^{M^{(1)}} \theta_{m}^{1} \phi^{1} \left(z_{m}^{0} \right)$$

...

$$y \cong d^{DL}(x;\theta) = \theta_0^J + \sum_{m=1}^{M^{(J)}} \theta_m^J \phi^J \left(z_m^{J-1}\right)$$

where the $M^{(1)}, M^{(2)}, ...$ and $\phi^1(\cdot), \phi^2(\cdot), ...$ are possibly different across each layer of the network.

A deep network creates new representations by composing older representations.



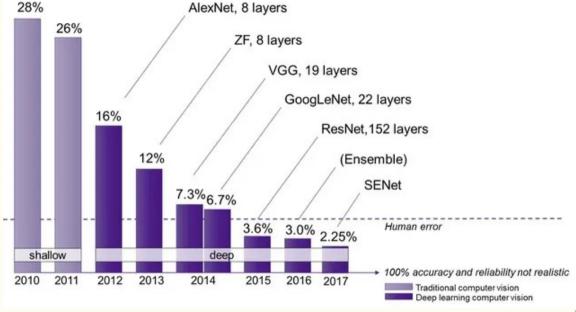
Input Values Hidden Layer 1 Output Layer
Input Layer Hidden Layer 2

Deep learning, II

- Also known as deep feedforward neural networks or, of fully connected, multilayer perceptrons.
- "Feedforward" comes from the fact that the composition of neural networks can be represented as a directed acyclic graph, which lacks feedback. We can have more general recurrent structures.
- J is known as the depth of the network (deep vs. shallow networks).
- The case J = 1 is a standard neural network.
- As before, we can select θ such that $d^{DL}(x;\theta)$ approximates a target function d(x) as closely as possible under some relevant metric.
- All other aspects (selecting $\phi(\cdot)$, J, M, ...) are known as the network architecture.

Why do deep neural networks "work" better?

- Why do we want to introduce hidden layers?
 - 1. It works! Evolution of ImageNet winners.
 - 2. The number of representations increases exponentially with the number of hidden layers, while computational cost grows linearly.
 - 3. Intuition: hidden layers induce highly nonlinear behavior in the joint creation of representations without the need to have domain knowledge (used, in other algorithms, in some form of greedy pre-processing).



Some consequences

- Because of the previous arguments, neural networks can efficiently approximate extremely complex functions.
- In particular, under certain (relatively weak) conditions:
 - 1. Neural networks are universal approximators.
 - 2. Neural networks break the "curse of dimensionality."
- Furthermore, neural networks are easy to code, stable, and scalable for multiprocessing (neural networks are built around tensors).

Further advantages

- Neural networks and deep learning often require less "inside knowledge" by experts on the area.
- While results can be highly counter-intuitive, deep neural networks deliver excellent performance.
- Outstanding open source libraries (Tensorflow, Keras, Pytorch, JAX) that integrate well with easy scripting languages (Python).
- Newer algorithms: batch normalization, residual connections, and depthwise separable convolutions.
- More recently, development of dedicated hardware (TPUs, AI accelerators, FPGAs) is likely to maintain a hedge for the area.
- The richness of an ecosystem is key to its long-run success.

Examples of code

1. An LQ optimal control problem:

```
https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.%20LQ_DP_DNN_Training_Main.ipynb
```

2. A Neoclassical growth model (discrete time):

```
https://colab.research.google.com/drive/1jbSti3LkxASZg04Bkod0EBJFXdf6xu9_?usp=sharing
```

3. A Neoclassical growth model (continuous time):

4. An OLG model:

```
https://github.com/sischei/DeepEquilibriumNets
```

5. A Krusell-Smith and a financial frictions HA code:

```
https://github.com/jesusfv/financial-frictions
```

Models with a representative agent

The stochastic neoclassical growth model

A representative household:

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \log(c)$$

$$c_t + k_{t+1} = w_t + (1 + r_t - \delta) k_t, \forall t > 0$$

$$\lim_{T \to \infty} \mathbb{E} \beta^T k_{T+1} c_T^{-1} k_0, z_0 = 0$$

• A representative firm:

$$y_t = (e^{z_t})^{1-\alpha} k_t^{\alpha}$$

$$z_t = \rho z_{t-1} + \sigma \nu_t, \quad \nu_t \sim \mathcal{N}(0, \sigma)$$

Solving the model with $\rho < 1$ is actually harder!

• Input markets are competitive and aggregate resource constraint holds: $y_t = c_t + k_{t+1} - (1 - \delta) k_t$.

The equilibrium Markov process

- With recursive notation, the states of the model are $X \equiv \begin{bmatrix} k & z \end{bmatrix}^{\top} \in \mathbb{R}^2_+$.
- Euler equation as a functional equation on k'(k, z):

$$1 = \mathbb{E}\left[\beta \frac{c(k,z)}{c(k'(k,z),z')} \left(1 - \delta + \alpha (e^{z'})^{1-\alpha} k'(k,z)^{\alpha-1}\right)\right]$$

where
$$c(k,z) \equiv (e^z)^{1-\alpha} k^{\alpha} + (1-\delta)k - k'(k,z)$$
.

Thus, conditioning on a policy:

$$X' = \Phi(X, z; k') = \begin{bmatrix} k'(k, z) \\ \rho z + \sigma \nu \end{bmatrix}$$

A deep learning approximation

- We approximate k'(k,z) with a deep neural network $k'_{\theta}(k,z)$ that belongs to the architecture $\mathcal{H}(\theta)$.
- Euler equation error:

$$\mathscr{L}(k_{\theta}',X) = \left[1 - \sum_{i=1}^{M} \omega_i \left[\beta \frac{c(k,z)}{c(k_{\theta}',z'(z,\nu_i))} \left(1 - \delta + \alpha(z'(z,\nu_i))^{1-\alpha}(k_{\theta}')^{\alpha-1}\right)\right]\right]^2$$

where $z'(z, \nu_i) = \rho \log z + \sigma \nu_i$.

• Goal:

$$k'^* = \arg\min_{k'_{\theta} \in \mathcal{H}(\theta)} \mathbb{E}_{X \sim \mu^*(X_0, T_{\text{pop}}; k'^*)} \left[\mathscr{L}(k'_{\theta}, X) \right]$$

where is the $\mu^*(X_0, T_{\text{pop}}; k'^*)$ population distribution.

Solving the equilibrium loop

• If we knew $\mu^*(\cdot)$, a trivial algorithm to solve the problem above would be to sample \mathcal{D} points from $\mu^*(\cdot)$ and solve the empirical risk:

$$\theta^* = \arg\min_{\theta \in \Theta} \frac{1}{|\mathcal{D}|} \sum_{X \in \mathcal{D}} \mathscr{L}(k'_{\theta}, X).$$

- The challenge, of course, is that we do not know $\mu^*(\cdot)$ precisely because of the equilibrium feedback loop.
- This is the primary difference between the applications of deep learning in engineering/natural sciences, and economics.

The idea

- Sample from a misspecified population distribution and periodically regenerate those samples as the
 policy function is refined.
- That is, given a k_i' , we solve:

$$k_{i+1}' \equiv \arg \min_{k_{\theta}' \in \mathcal{H}(\theta)} \mathbb{E}_{X \sim \mu^*(X_0, T_{\text{pop}}; k_i')} \left[\mathscr{L}(k_{\theta}', X) \right],$$

until convergence.

• In our case, we start with a $k'_1(\cdot)$ policy from the Solow model with constant savings rate s_{ss} , $k'_1(k,z) = s_{ss}z^{1-\alpha}k^{\alpha} + (1-\delta)k$.

An iterative algorithm

1. Solve the empirical risk minimization problem given the current \mathcal{D}_i ,

$$heta_{i+1} = \arg\min_{ heta \in heta} rac{1}{|\mathcal{D}_i|} \sum_{X \in \mathcal{D}_i} \mathscr{L}(k_ heta', X).$$

- 2. Generate a new \mathcal{D}_{i+1} using samples from $\mu^*(X_0, T_{\text{pop}}, k'_{\theta_{i+1}})$.
- 3. Iterate until the empirical risk is below a threshold.

Parameters, hyperparameters, and optimizer

- Parameter values: $\beta = 0.9$, $\alpha = 1/3$, $\delta = 0.2$, $\rho = 0.9$, and $\sigma = 0.025$.
- M = 7 nodes for quadrature.
- A deep neural network with four layers, each with 128 nodes, a ReLU activation function $\max\{0, x\}$, and a softplus final layer, $\log(1 + e^x)$. This leads to approximately 50K parameters in θ .
- $T_{\text{pop}} = 20$ and generate trajectories (k_t, z_t) for $t = 0, \ldots, T_{\text{pop}}$.

•
$$X_0 \sim \mathcal{N}(\begin{bmatrix} k_0 & z_0 \end{bmatrix}^{\top}, \Sigma)$$
 with $z_0 = 1, k_0 = 0.8 \times k_{ss}$, and $\Sigma \equiv \begin{bmatrix} 0.008^2 & 0 \\ 0 & 0.02^2 \end{bmatrix}$.

- 100 iterations of the L-BFGS optimizer and regenerate the \mathcal{D}_i every five iterations.
- The algorithm, coded in Jax, runs in approximately 1.2 seconds using only the CPU of a laptop.

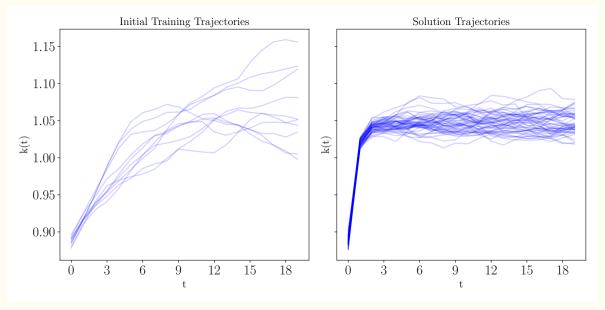


Figure 1: Initial vs. final trajectories of capital.

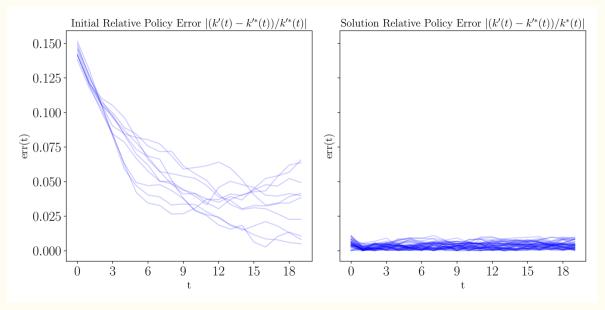


Figure 2: Initial vs. final policy errors

Models with heterogeneous agents

The challenge

- To compute and take to the data models with heterogeneous agents, we need to deal with:
 - 1. The distribution of agents G_t .
 - 2. The operator $H(\cdot)$ that characterizes how G_t evolves:

$$G_{t+1} = H(G_t, S_t)$$

or

$$\frac{\partial G_t}{\partial t} = H(G_t, S_t)$$

given the other aggregate states of the economy S_t .

• How do we track G_t and compute $H(G_t, S_t)$?

A common approach

- If we are dealing with N discrete types, we keep track of N-1 weights.
- If we are dealing with continuous types, we extract a finite number of features from G_t :
 - 1. Moments.
 - 2. Q-quantiles.
 - 3. Weights in a mixture of normals...
- ullet We stack either the weights or features of the distribution in a vector μ_t .
- We assume μ_t follows the operator $h(\mu_t, S_t)$ instead of $H(G_t, S_t)$.
- We parametrize $h(\mu_t, S_t)$ as $h^j(\mu_t, S_t; \theta)$.
- We determine the unknown coefficients θ such that an economy where μ_t follows $h^j(\mu_t, S_t; \theta)$ replicates as well as possible the behavior an economy where G_t follows $H(\cdot)$.

Example: Basic Krusell-Smith model

• Two aggregate variables: aggregate productivity shock and household distribution $G_t(a, z)$ where:

$$\int G_t(a,z)da=K_t$$

- We summarize $G_t(a,\cdot)$ with the log of its mean: $\mu_t = \log K_t$ (extending to higher moments is simple, but tedious).
- We parametrize $\underbrace{\log K_{t+1}}_{\mu_{t+1}} = \underbrace{\theta_0(s_t) + \theta_1(s_t) \log K_t}_{h^j(\mu_t, s_t; \theta)}.$
- We determine $\{\theta_0(s_t), \theta_1(s_t)\}$ by OLS run on a simulation.

Problems

- There is limited guidance regarding feature and parameter selection in general cases.
 - Yes, keeping track of the log of the mean and a linear functional form works well for the basic model.
 But what about an arbitrary model?
 - Method suffers from "curse of dimensionality": difficult to implement with many state variables or high N/higher moments.
 - Lack of theoretical foundations (Does it converge? Under which metric?).

How can deep learning help?

- Deep learning addresses challenges:
 - 1. How to extract features from an infinite-dimensional object efficiently.
 - 2. How to parametrize the non-linear operator mapping how distributions evolve.
 - 3. How to tackle the "curse of dimensionality."
- Given time limitations, I will discuss the last two points today.
- In our notation of y = f(x):
 - 1. $y = \mu_{t+1}$.
 - 2. $x = (\mu_t, S_t)$.