
Deep Learning for Solving Economic Models

Jesús Fernández-Villaverde1

November 17, 2025

1University of Pennsylvania

Functional equations

• A large class of problems in economics search for a function d that solves:

T (d) = 0

• More formally:

1. Let J1 and J2 be two functional spaces and let T : J1 → J2 be an operator between these two spaces.

2. Let Ω ⊆ Rl .

3. Then, we need to find a function d : Ω → Rm such that T (d) = 0.

• Points to remember:

1. Regular equations are particular examples of functional equations.

2. 0 denotes the zero element of the space.

3. This formalism deals both with market equilibrium and social planner problems.

1

Example I: Decision rules

• Take the basic stochastic neoclassical growth model:

maxE0

∞∑
t=0

βtu (ct)

ct + kt+1 = eztkα
t + (1− δ) kt , ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• The first-order condition:

u′ (ct) = βEt

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}

2

Example I: Decision rules

• There is a decision rule (a.k.a. policy function) that gives the optimal choice of consumption and

capital tomorrow given the states today:

d =

{
d1 (kt , zt) = ct
d2 (kt , zt) = kt+1

• Then:

T = u′
(
d1 (kt , zt)

)
−βEt

{
u′
(
d1
(
d2 (kt , zt) , zt+1

)) (
1 + αezt+1

(
d2 (kt , zt)

)α−1 − δ
)}

= 0

• If we find d , and a transversality condition is satisfied, we are done!

3

Example II: Conditional expectations

• Let us go back to our Euler equation:

u′ (ct)− βEt

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}

= 0

• Define now:

d =

{
d1 (kt , zt) = ct

d2 (kt , zt) = Et

{
u′ (ct+1)

(
1 + αezt+1kα−1

t+1 − δ
)}

• Why? Think about a model with a ZLB.

• Then:

T (d) = u′
(
d1 (kt , zt)

)
− βd2 (kt , zt) = 0

4

Example III: Value functions

• There is a recursive problem associated with the previous sequential problem:

V (kt , zt) = max
kt+1

{u (ct) + βEtV (kt+1, zt+1)}

ct = eztkα
t + (1− δ) kt − kt+1, ∀ t > 0

zt = ρzt−1 + σεt , εt ∼ N (0, 1)

• Then:

d (kt , zt) = V (kt , zt)

and

T (d) = d (kt , zt)−max
kt+1

{u (ct) + βEtd (kt+1, zt+1)} = 0

5

How do we solve functional equations?

• General idea: substitute d (x) by dn (x , θ) where θ is an n − dim vector of coefficients to be

determined.

• Two main approaches:

1. Perturbation methods:

dn (x , θ) =
n∑

i=0

θi (x − x0)
i

We use implicit-function theorems to find θi .

2. Projection methods:

dn (x , θ) =
n∑

i=0

θiΨi (x)

We pick a basis {Ψi (x)}∞i=0 and “project” T against that basis.

6

All traditional solution methods are variations of these two ideas

• Linearization (or loglinearization): equivalent to a first-order perturbation.

• Linear-quadratic approximation to the utility function: equivalent (under certain conditions) to a

first-order perturbation.

• Parameterized expectations: a particular example of projection.

• Value function iteration: it can be interpreted as an iterative procedure to solve a particular

projection method. Nevertheless, I prefer to think about it as a different family of problems.

• Policy function iteration: similar to VFI.

7

Neural networks

A different approximation: A neural network

• A neural network is an approximation to d(x) of the form:

y = d(x) ∼= dNN (x ; θ) = θ0 +
M∑

m=1

θmϕ (zm)

where ϕ(·) is an arbitrary activation function and:

zm =
N∑

n=0

θn,mxn

• The xn’s are known as the features of the data, which belong to a feature space X .

• The ϕ (zm)’s are known as the representations of the data.

• M is known as the width of the model (wide vs. thin networks).

• “Training” the network: We select θ such that dNN (x ; θ) is as close to d(x) as possible given some

relevant metric (e.g., the ℓ2 norm).
8

Flow representation

WeightsInputs

θ0x0

θ1x1

θ2x2

θnxn

n∑
i=0

θixi

Linear Trans.

Activation

Output

9

Comparison with previous approximations

• Compare:

d(x) ∼= dNN (x ; θ) = θ0 +
M∑

m=1

θmϕ

(
N∑

n=0

θn,mxn

)
with a standard projection:

d(x) ∼= dCP (x ; θ) = θ0 +
M∑

m=1

θmϕm (x)

where ϕm is, for example, a Chebyshev polynomial.

• We trade rich coefficient parameterizations for parsimonious basis functions.

10

Why do neural networks “work”?

• Neural networks consist entirely of chains of tensor operations: we take x , we perform affine

transformations, and apply an activation function.

• Thus, these tensor operations are geometric transformations of x . In fact, a better name for neural

networks could be chained geometric transformations.

• In other words: neural networks look for convenient geometrical representations of high-dimensional

manifolds.

• The success of any functional approximation problem is to search for the right geometric space in

which to perform it, not to search for a “better” basis function.

• Think about:

y = kαl1−α ⇒ log y = α log k + (1− α) log l

11

130 CHAPTER 5 Fundamentals of machine learning

it enables local generalization. But remarkably, humans deal with extreme novelty all the
time, and they do just fine. You don’t need to be trained in advance on countless
examples of every situation you’ll ever have to encounter. Every single one of your
days is different from any day you’ve experienced before, and different from any day
experienced by anyone since the dawn of humanity. You can switch between spending
a week in NYC, a week in Shanghai, and a week in Bangalore without requiring thou-
sands of lifetimes of learning and rehearsal for each city.

 Humans are capable of extreme generalization, which is enabled by cognitive mecha-
nisms other than interpolation: abstraction, symbolic models of the world, reasoning,
logic, common sense, innate priors about the world—what we generally call reason, as
opposed to intuition and pattern recognition. The latter are largely interpolative in
nature, but the former isn’t. Both are essential to intelligence. We’ll talk more about
this in chapter 14.

WHY DEEP LEARNING WORKS

Remember the crumpled paper ball metaphor from chapter 2? A sheet of paper rep-
resents a 2D manifold within 3D space (see figure 5.9). A deep learning model is a
tool for uncrumpling paper balls, that is, for disentangling latent manifolds.

A deep learning model is basically a very high-dimensional curve—a curve that is
smooth and continuous (with additional constraints on its structure, originating from
model architecture priors), since it needs to be differentiable. And that curve is fitted
to data points via gradient descent, smoothly and incrementally. By its very nature,
deep learning is about taking a big, complex curve—a manifold—and incrementally
adjusting its parameters until it fits some training data points.

Manifold interpolation

(intermediate point

on the latent manifold)

Linear interpolation

(average in the encoding space)

Figure 5.8 Difference between
linear interpolation and interpolation
on the latent manifold. Every point on
the latent manifold of digits is a valid
digit, but the average of two digits
usually isn’t.

Figure 5.9 Uncrumpling a
complicated manifold of data

12

Deep learning, I

• A deep learning network is an acyclic multilayer composition of J > 1 neural networks:

z0m = θ00,m +
N∑

n=1

θ0n,mxn

and

z1m = θ10,m +
M(1)∑
m=1

θ1mϕ
1
(
z0m
)

...

y ∼= dDL(x ; θ) = θJ0 +
M(J)∑
m=1

θJmϕ
J
(
zJ−1
m

)
where the M(1),M(2), ... and ϕ1(·), ϕ2(·), ... are possibly different across each layer of the network.

• A deep network creates new representations by composing older representations.

13

x0

x1

x2

Input Values

Input Layer

Hidden Layer 1

Hidden Layer 2

Output Layer

14

Deep learning, II

• Also known as deep feedforward neural networks or, of fully connected, multilayer perceptrons.

• “Feedforward” comes from the fact that the composition of neural networks can be represented as a

directed acyclic graph, which lacks feedback. We can have more general recurrent structures.

• J is known as the depth of the network (deep vs. shallow networks).

• The case J = 1 is a standard neural network.

• As before, we can select θ such that dDL (x ; θ) approximates a target function d(x) as closely as

possible under some relevant metric.

• All other aspects (selecting ϕ(·), J, M, ...) are known as the network architecture.

15

Why do deep neural networks “work” better?

• Why do we want to introduce hidden layers?

1. It works! Evolution of ImageNet winners.

2. The number of representations increases exponentially with the number of hidden layers, while

computational cost grows linearly.

3. Intuition: hidden layers induce highly nonlinear behavior in the joint creation of representations without

the need to have domain knowledge (used, in other algorithms, in some form of greedy pre-processing).

16

17

Some consequences

• Because of the previous arguments, neural networks can efficiently approximate extremely complex

functions.

• In particular, under certain (relatively weak) conditions:

1. Neural networks are universal approximators.

2. Neural networks break the “curse of dimensionality.”

• Furthermore, neural networks are easy to code, stable, and scalable for multiprocessing (neural

networks are built around tensors).

18

Further advantages

• Neural networks and deep learning often require less “inside knowledge” by experts on the area.

• While results can be highly counter-intuitive, deep neural networks deliver excellent performance.

• Outstanding open source libraries (Tensorflow, Keras, Pytorch, JAX) that integrate well with easy

scripting languages (Python).

• Newer algorithms: batch normalization, residual connections, and depthwise separable convolutions.

• More recently, development of dedicated hardware (TPUs, AI accelerators, FPGAs) is likely to

maintain a hedge for the area.

• The richness of an ecosystem is key to its long-run success.

19

Examples of code

1. An LQ optimal control problem:

https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.

%20LQ_DP_DNN_Training_Main.ipynb

2. A Neoclassical growth model (discrete time):

https://colab.research.google.com/drive/1jbSti3LkxASZg04Bkod0EBJFXdf6xu9_?usp=sharing

3. A Neoclassical growth model (continuous time):

https://colab.research.google.com/drive/1rFfqbJYn26_nm-CS21Fbw_QV7ccM8XlT?usp=sharing

4. An OLG model:

https://github.com/sischei/DeepEquilibriumNets

5. A Krusell-Smith and a financial frictions HA code:

https://github.com/jesusfv/financial-frictions

20

https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.%20LQ_DP_DNN_Training_Main.ipynb
https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.%20LQ_DP_DNN_Training_Main.ipynb
https://colab.research.google.com/drive/1jbSti3LkxASZg04Bkod0EBJFXdf6xu9_?usp=sharing
https://colab.research.google.com/drive/1rFfqbJYn26_nm-CS21Fbw_QV7ccM8XlT?usp=sharing
https://github.com/sischei/DeepEquilibriumNets
https://github.com/jesusfv/financial-frictions

Models with a representative

agent

The stochastic neoclassical growth model

• A representative household:

maxE0

∞∑
t=0

βt log(c)

ct + kt+1 = wt + (1 + rt − δ) kt , ∀ t > 0

lim
T→∞

EβTkT+1c
−1
T k0, z0 = 0

• A representative firm:

yt = (ezt)1−αkα
t

zt = ρzt−1 + σνt , νt ∼ N (0, σ)

Solving the model with ρ < 1 is actually harder!

• Input markets are competitive and aggregate resource constraint holds: yt = ct + kt+1 − (1− δ) kt .

21

The equilibrium Markov process

• With recursive notation, the states of the model are X ≡
[
k z

]⊤
∈ R2

+.

• Euler equation as a functional equation on k ′(k, z):

1 = E
[
β

c(k , z)

c(k ′(k, z), z ′)

(
1− δ + α(ez

′
)1−αk ′(k, z)α−1

)]
where c(k, z) ≡ (ez)1−αkα + (1− δ)k − k ′(k, z).

• Thus, conditioning on a policy:

X ′ = Φ(X , z ; k ′) =

[
k ′(k, z)

ρz + σν

]

22

A deep learning approximation

• We approximate k ′(k, z) with a deep neural network k ′
θ(k, z) that belongs to the architecture H(θ).

• Euler equation error:

L (k ′
θ,X) =

[
1−

M∑
i=1

ωi

[
β

c(k , z)

c(k ′
θ, z

′(z , νi))

(
1− δ + α(z ′(z , νi))

1−α(k ′
θ)

α−1
)]]2

where z ′(z , νi) = ρ log z + σνi .

• Goal:

k ′∗ = argmin
k′
θ∈H(θ)

EX∼µ∗(X0,Tpop;k′∗) [L (k ′
θ,X)]

where is the µ∗(X0,Tpop; k
′∗) population distribution.

23

Solving the equilibrium loop

• If we knew µ∗(·), a trivial algorithm to solve the problem above would be to sample D points from

µ∗(·) and solve the empirical risk:

θ∗ = argmin
θ∈Θ

1

|D|
∑
X∈D

L (k ′
θ,X).

• The challenge, of course, is that we do not know µ∗(·) precisely because of the equilibrium feedback

loop.

• This is the primary difference between the applications of deep learning in engineering/natural

sciences, and economics.

24

The idea

• Sample from a misspecified population distribution and periodically regenerate those samples as the

policy function is refined.

• That is, given a k ′
i , we solve:

k ′
i+1 ≡ arg min

k′
θ∈H(θ)

EX∼µ∗(X0,Tpop;k′
i)
[L (k ′

θ,X)] ,

until convergence.

• In our case, we start with a k ′
1(·) policy from the Solow model with constant savings rate sss ,

k ′
1(k, z) = sssz

1−αkα + (1− δ)k.

25

An iterative algorithm

1. Solve the empirical risk minimization problem given the current Di ,

θi+1 = argmin
θ∈θ

1

|Di |
∑
X∈Di

L (k ′
θ,X).

2. Generate a new Di+1 using samples from µ∗(X0,Tpop, k
′
θi+1

).

3. Iterate until the empirical risk is below a threshold.

26

Parameters, hyperparameters, and optimizer

• Parameter values: β = 0.9, α = 1/3, δ = 0.2, ρ = 0.9, and σ = 0.025.

• M = 7 nodes for quadrature.

• A deep neural network with four layers, each with 128 nodes, a ReLU activation function max{0, x},
and a softplus final layer, log(1 + ex). This leads to approximately 50K parameters in θ.

• Tpop = 20 and generate trajectories (kt , zt) for t = 0, . . . ,Tpop.

• X0 ∼ N (
[
k0 z0

]⊤
,Σ) with z0 = 1, k0 = 0.8× kss , and Σ ≡

[
0.0082 0

0 0.022

]
.

• 100 iterations of the L-BFGS optimizer and regenerate the Di every five iterations.

• The algorithm, coded in Jax, runs in approximately 1.2 seconds using only the CPU of a laptop.

27

0 3 6 9 12 15 18
t

0.90

0.95

1.00

1.05

1.10

1.15

k
(t

)
Initial Training Trajectories

0 3 6 9 12 15 18
t

k
(t

)

Solution Trajectories

Figure 1: Initial vs. final trajectories of capital.
28

0 3 6 9 12 15 18
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

er
r(

t)
Initial Relative Policy Error |(k′(t)− k′∗(t))/k′∗(t)|

0 3 6 9 12 15 18
t

er
r(

t)

Solution Relative Policy Error |(k′(t)− k′∗(t))/k∗(t)|

Figure 2: Initial vs. final policy errors
29

Models with heterogeneous

agents

The challenge

• To compute and take to the data models with heterogeneous agents, we need to deal with:

1. The distribution of agents Gt .

2. The operator H(·) that characterizes how Gt evolves:

Gt+1 = H(Gt ,St)

or
∂Gt

∂t
= H(Gt ,St)

given the other aggregate states of the economy St .

• How do we track Gt and compute H(Gt , St)?

30

A common approach

• If we are dealing with N discrete types, we keep track of N − 1 weights.

• If we are dealing with continuous types, we extract a finite number of features from Gt :

1. Moments.

2. Q-quantiles.

3. Weights in a mixture of normals...

• We stack either the weights or features of the distribution in a vector µt .

• We assume µt follows the operator h(µt , St) instead of H(Gt , St).

• We parametrize h(µt , St) as h
j(µt , St ; θ).

• We determine the unknown coefficients θ such that an economy where µt follows h
j(µt , St ; θ)

replicates as well as possible the behavior an economy where Gt follows H(·).
31

Example: Basic Krusell-Smith model

• Two aggregate variables: aggregate productivity shock and household distribution Gt(a, z) where:∫
Gt(a, z)da = Kt

• We summarize Gt(a, ·) with the log of its mean: µt = logKt (extending to higher moments is simple,

but tedious).

• We parametrize logKt+1︸ ︷︷ ︸
µt+1

= θ0(st) + θ1(st) logKt︸ ︷︷ ︸
hj (µt ,st ;θ)

.

• We determine {θ0(st), θ1(st)} by OLS run on a simulation.

32

Problems

• There is limited guidance regarding feature and parameter selection in general cases.

• Yes, keeping track of the log of the mean and a linear functional form works well for the basic model.

But what about an arbitrary model?

• Method suffers from “curse of dimensionality”: difficult to implement with many state variables or high

N/higher moments.

• Lack of theoretical foundations (Does it converge? Under which metric?).

33

How can deep learning help?

• Deep learning addresses challenges:

1. How to extract features from an infinite-dimensional object efficiently.

2. How to parametrize the non-linear operator mapping how distributions evolve.

3. How to tackle the “curse of dimensionality.”

• Given time limitations, I will discuss the last two points today.

• In our notation of y = f (x):

1. y = µt+1.

2. x = (µt ,St).

34

	Neural networks
	Models with a representative agent
	Models with heterogeneous agents

