Deep Learning for Solving Economic Models

&

Penn

UNIVERSITY 0f PENNSYLVANIA

Jestis Fernandez-Villaverde®

November 17, 2025

LUniversity of Pennsylvania

Functional equations

e A large class of problems in economics search for a function d that solves:
T(d)=0
e More formally:
1. Let J! and J? be two functional spaces and let 7 : J* — J? be an operator between these two spaces.
2. Let Q C R
3. Then, we need to find a function d : Q — R™ such that 7 (d) = 0.
e Points to remember:
1. Regular equations are particular examples of functional equations.
2. 0 denotes the zero element of the space.

3. This formalism deals both with market equilibrium and social planner problems.

Example I: Decision rules

e Take the basic stochastic neoclassical growth model:

max Eg Zﬁtu(ct)

t=0
Ct+kt+1:eztk?+(176)kt,vt>0
Zy = PZt—1 + o0&, Er ~ N(O, 1)

e The first-order condition:

u' (ct) = BE: {u’ (ces1) (1 + aezu1k;x+—11 . 5)}

Example I: Decision rules

e There is a decision rule (a.k.a. policy function) that gives the optimal choice of consumption and
capital tomorrow given the states today:

d* d1 (ktazt):Ct
d2 (kt,zt) — kt+1

e Then:

T =d (d" (ke, 2:))
—BE U (* (¢ (ki,22) , 2e41)) (14 ™ (62 (ki 2)" " = 6) } =0

e If we find d, and a transversality condition is satisfied, we are done!

Example II: Conditional expectations

e let us go back to our Euler equation:

U (ct) — BE: {t (cey1) (1 + ae® k23t —6)} =0

e Define now:
d— d* (ke,ze) = ¢
d? (ke, ze) = Be {0/ (cepn) (1 + ae® k27 — 6)}

e Why? Think about a model with a ZLB.

e Then:
T (d) = ' (d* (ke, z)) — Bd? (ke,z:) =0

Example IlI: Value functions

e There is a recursive problem associated with the previous sequential problem:

V (keyzi) = max{u(ct) + BELV (i1, ze41) }

k41
Ct:ezrk;l+(175)kt7kt+1, V t>0
z: = pzi_1 + o€, € ~ N(0,1)

e Then:
d(ktazt) = V(ktazt)

and
T(d)=d(ke,z:) — Tax{u (ct) + BE:d (key1,2e41)} =0

t+1

How do we solve functional equations?

e General idea: substitute d (x) by d" (x,0) where 6 is an n — dim vector of coefficients to be
determined.

e Two main approaches:

1. Perturbation methods:
n

d” (x,0) = > 0i (x — x0)’

i=0
We use implicit-function theorems to find 6;.
2. Projection methods:

dn (X,@) = ZO,\U, (X)

We pick a basis {W; (x)}°, and “project” T against that basis.

All traditional solution methods are variations of these two ideas

e Linearization (or loglinearization): equivalent to a first-order perturbation.

e Linear-quadratic approximation to the utility function: equivalent (under certain conditions) to a
first-order perturbation.

e Parameterized expectations: a particular example of projection.

e Value function iteration: it can be interpreted as an iterative procedure to solve a particular
projection method. Nevertheless, | prefer to think about it as a different family of problems.

e Policy function iteration: similar to VFI.

Neural networks

A different approximation: A neural network

e A neural network is an approximation to d(x) of the form:

M
y =d(x) = d"W(x;0) =6, + Z Om® (zm)

m=1

where ¢(-) is an arbitrary activation function and:

N
Zm = § en,an
n=0

e The x,'s are known as the features of the data, which belong to a feature space X.

The ¢ (zm)'s are known as the representations of the data.

M is known as the width of the model (wide vs. thin networks).

e “Training” the network: We select 6 such that d"V (x;) is as close to d(x) as possible given some
relevant metric (e.g., the £2 norm).

Flow representation

Inputs Weights

XO RS 2 90
X1 ----» 0y Activation

— | J |---» Output
X2 RS 2 92

inear Trans.

Comparison with previous approximations

e Compare:

M N
d(x) 2 d"™ (x;0) =60+ > _ Om¢ (Z 9n7mx,,>

m=1 n=0

with a standard projection:

M
d(x) = dP (x:6) = o+ . O (x)

m=1

where ¢, is, for example, a Chebyshev polynomial.

e We trade rich coefficient parameterizations for parsimonious basis functions.

10

y do neural networks “work”?

Neural networks consist entirely of chains of tensor operations: we take x, we perform affine
transformations, and apply an activation function.

Thus, these tensor operations are geometric transformations of x. In fact, a better name for neural
networks could be chained geometric transformations.

In other words: neural networks look for convenient geometrical representations of high-dimensional

manifolds.

The success of any functional approximation problem is to search for the right geometric space in
which to perform it, not to search for a “better” basis function.

Think about:
y=k*"%=logy = alogk+ (1 —a)log/

11

Ny

12

Deep learning, |

e A deep learning network is an acyclic multilayer composition of J > 1 neural networks:

N
0 _ po E 0
Zm = 90,m + en,mxn
n=1
and

M
Zpy = Oom+ Y Omd" (20)
m=1

M)
y=d®(x:0) =05+ > 0707 (z71)
m=1

where the MM, M@ and ¢*(-), $?(-), ... are possibly different across each layer of the network.

e A deep network creates new representations by composing older representations.
13

X0 — —»

>

X1 — —»
o N

X0 — —»

Input Values Hidden Layer 1 Output Layer
Input Layer Hidden Layer 2

14

Deep learning, Il

Also known as deep feedforward neural networks or, of fully connected, multilayer perceptrons.

“Feedforward” comes from the fact that the composition of neural networks can be represented as a
directed acyclic graph, which lacks feedback. We can have more general recurrent structures.

e Jis known as the depth of the network (deep vs. shallow networks).

The case J = 1 is a standard neural network.

As before, we can select 6 such that dP* (x; §) approximates a target function d(x) as closely as

possible under some relevant metric.

All other aspects (selecting ¢(-), J, M, ...) are known as the network architecture.

15

y do deep neural networks “work” better?

e Why do we want to introduce hidden layers?

1. It works! Evolution of ImageNet winners.

2. The number of representations increases exponentially with the number of hidden layers, while

computational cost grows linearly.

3. Intuition: hidden layers induce highly nonlinear behavior in the joint creation of representations without

the need to have domain knowledge (used, in other algorithms, in some form of greedy pre-processing).

16

28%

2010 201

2012 2013

AlexMet, 8 layers
ZF, 8 layers

/’ VGG, 19 layers

/ i j GoogleNet, 22 layers
/ o ResNet, 152 layers

; YA 4 /" (Ensemble)

2014 2015 206 2017

SENet

Human error

100% accuracy and reliability not realistic

[Traditional computer vision
I Doap learning compuiter vision

17

Some consequences

e Because of the previous arguments, neural networks can efficiently approximate extremely complex
functions.

e In particular, under certain (relatively weak) conditions:

1. Neural networks are universal approximators.

2. Neural networks break the “curse of dimensionality.”

e Furthermore, neural networks are easy to code, stable, and scalable for multiprocessing (neural
networks are built around tensors).

18

Further advantages

e Neural networks and deep learning often require less “inside knowledge" by experts on the area.
e While results can be highly counter-intuitive, deep neural networks deliver excellent performance.

e OQutstanding open source libraries (Tensorflow, Keras, Pytorch, JAX) that integrate well with easy

scripting languages (Python).
e Newer algorithms: batch normalization, residual connections, and depthwise separable convolutions.

e More recently, development of dedicated hardware (TPUs, Al accelerators, FPGAs) is likely to
maintain a hedge for the area.

e The richness of an ecosystem is key to its long-run success.

19

Examples of code

1.

An LQ optimal control problem:

https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear?’,20quadratic?20DP%20DNN/3.
%20LQ_DP_DNN_Training_Main.ipynb

. A Neoclassical growth model (discrete time):

https://colab.research.google.com/drive/1jbSti3LkxASZg04BkodOEBJFXdf6xu9_7usp=sharing

. A Neoclassical growth model (continuous time):

https://colab.research.google.com/drive/1rFfqbJ¥n26_nm-CS21Fbw_QV7ccM8X1T?usp=sharing

. An OLG model:

https://github.com/sischei/DeepEquilibriumNets

. A Krusell-Smith and a financial frictions HA code:

https://github.com/jesusfv/financial-frictions
20

https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.%20LQ_DP_DNN_Training_Main.ipynb
https://github.com/Mekahou/Fun-Stuff/blob/main/codes/linear%20quadratic%20DP%20DNN/3.%20LQ_DP_DNN_Training_Main.ipynb
https://colab.research.google.com/drive/1jbSti3LkxASZg04Bkod0EBJFXdf6xu9_?usp=sharing
https://colab.research.google.com/drive/1rFfqbJYn26_nm-CS21Fbw_QV7ccM8XlT?usp=sharing
https://github.com/sischei/DeepEquilibriumNets
https://github.com/jesusfv/financial-frictions

Models with a representative
agent

The stochastic neoclassical growth model

e A representative household:

max Eq Z B log(c)
t=0

Ct+kt+1:Wt+(1+rt7(s)kt,vt>0

lim EBT kri1cy ko, 20 =0
T—oo

e A representative firm:
Y = (ezt)lfakéx
2z = pz—1 +ovy, vy ~N(0,0)
Solving the model with p < 1 is actually harder!

e Input markets are competitive and aggregate resource constraint holds: y; = ¢; + key1 — (1 —) ke.

21

The equilibrium Markov process

-
e With recursive notation, the states of the model are X = [k z} S Ri.

e Euler equation as a functional equation on k’(k, z):

B c(k,z)
1=E {6 c(k'(k,z),2")

(1 — 5+ ae?)oK (k, z)“l)}
where c(k,z) = (€)1~ k + (1 — 0)k — K'(k, 2).

e Thus, conditioning on a policy:

K (k, z)
pz + ov

X' = (X, z k)

22

A deep learning approximation

e \We approximate k’(k,z) with a deep neural network kj(k, z) that belongs to the architecture ().

e Euler equation error:

g(km

2
— Wi kiz) _ o Z/ z. U 11—« INo—1
1 § { c(ky, 2'(z,vy)) (104 a2 (z,v1)) (ko))H

where Z'(z,v;) = plog z + ov;.
e Goal:

k/* = arg min]Elel’*(X01T}70p;k/*) [,ff(ké.X)]
k;eH(é))

where is the 1*(Xo, Tpop; k™) population distribution.

23

Solving the equilibrium loop

e If we knew p*(+), a trivial algorithm to solve the problem above would be to sample D points from

1*(+) and solve the empirical risk:

1
0" = argmin — S 2 (k), X).
arg min m);) (kg, X)

e The challenge, of course, is that we do not know p*(+) precisely because of the equilibrium feedback

loop.

e This is the primary difference between the applications of deep learning in engineering/natural

sciences, and economics.

24

e Sample from a misspecified population distribution and periodically regenerate those samples as the
policy function is refined.

e That is, given a k,-’, we solve:

k,H_arg min Ex. . (x,T, [j(ke, X)),

ky €H(0) et

until convergence.

e In our case, we start with a kj (-

) policy from the Solow model with constant savings rate s,
ki (k,z) = szt~ %k™ + (1 —)k.

25

An iterative algorithm

1. Solve the empirical risk minimization problem given the current D;,

0iy1 = argmln Z L(ky, X

2. Generate a new D;; using samples from 1*(Xo, Tpop, kg)/_ﬂ).

3. lterate until the empirical risk is below a threshold.

26

Parameters, hyperparameters, and optimizer

Parameter values: 8 =09, « =1/3, § =0.2, p = 0.9, and o = 0.025.
e M =7 nodes for quadrature.

A deep neural network with four layers, each with 128 nodes, a ReLU activation function max{0, x},
and a softplus final layer, log(1 4 €*). This leads to approximately 50K parameters in 6.

o T

pop = 20 and generate trajectories (k¢, z;) for t =0, ..., Tpop.

.
Xo NN({kO zo} ,T) with zo = 1, ko = 0.8 X kes, and T =

0.0082 0
0 0.022|

100 iterations of the L-BFGS optimizer and regenerate the D; every five iterations.

The algorithm, coded in Jax, runs in approximately 1.2 seconds using only the CPU of a laptop.

27

1.157

1.10+

1.057

1.001

0.951

0.90+

Initial Training Trajectories

Solution Trajectories

/

7 <
v <
/ ’ /
7
6 9 12 15

18

Figure 1: Initial vs. final trajectories of capital.

28

0.150
0.1251
0.100
%0.075-
0.050
0.0251

0.000

Initial Relative Policy Error |(K'(t) — k™*(t))/k"™(t)] Solution Relative Policy Error |(K'(t) — k™(t))/k*(t)|

\\
0 3 6 9 12 15 18 0 3 6 9 1215 18
t t

Figure 2: Initial vs. final policy errors

29

Models with heterogeneous
agents

The challenge

e To compute and take to the data models with heterogeneous agents, we need to deal with:
1. The distribution of agents G;.
2. The operator H(-) that characterizes how G; evolves:
Grr1 = H(G:, St)

or
0G:

ot
given the other aggregate states of the economy S;.

= H(G., S:)

e How do we track G; and compute H(G;, S;)?

30

A common approach

e If we are dealing with N discrete types, we keep track of N — 1 weights.

e If we are dealing with continuous types, we extract a finite number of features from G;:
1. Moments.
2. Q-quantiles.

3. Weights in a mixture of normals...

We stack either the weights or features of the distribution in a vector ;.
e We assume p; follows the operator h(u¢, S¢) instead of H(Gy, St).

e We parametrize h(u, S;) as W (s, St; 0).

We determine the unknown coefficients 8 such that an economy where 1, follows hj(ut, S:;0)
replicates as well as possible the behavior an economy where G; follows H(-).

31

Example: Basic Krusell-Smith model

e Two aggregate variables: aggregate productivity shock and household distribution G;(a, z) where:

/ Gi(a,z)da = K;

e We summarize G;(a,-) with the log of its mean: u; = log K; (extending to higher moments is simple,
but tedious).

e We parametrize log K; 11 = Oo(s;) + 01(s:) log K.
——

Ht+1 W (pe,se:0)

We determine {0o(s¢),01(st)} by OLS run on a simulation.

32

e There is limited guidance regarding feature and parameter selection in general cases.

e Yes, keeping track of the log of the mean and a linear functional form works well for the basic model.
But what about an arbitrary model?

e Method suffers from “curse of dimensionality”: difficult to implement with many state variables or high
N /higher moments.

e Lack of theoretical foundations (Does it converge? Under which metric?).

33

How can deep learning help?

e Deep learning addresses challenges:

1. How to extract features from an infinite-dimensional object efficiently.
2. How to parametrize the non-linear operator mapping how distributions evolve.

3. How to tackle the “curse of dimensionality.”
e Given time limitations, | will discuss the last two points today.
e In our notation of y = f(x):

1.y = fey1.

2. x = (Mt, St)

34

	Neural networks
	Models with a representative agent
	Models with heterogeneous agents

